Construction of Rational Elliptic Surfaces with Mordell-Weil Rank 4
نویسندگان
چکیده
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملElliptic K 3 Surfaces with Geometric Mordell - Weil
We prove that the elliptic surface y 2 = x 3 + 2(t 8 + 14t 4 + 1)x + 4t 2 (t 8 + 6t 4 + 1) has geometric Mordell-Weil rank 15. This completes a list of Kuwata, who gave explicit examples of elliptic K3-surfaces with geometric Mordell
متن کاملThree lectures on elliptic surfaces and curves of high rank
Three lectures on elliptic surfaces and curves of high rank Noam D. Elkies Over the past two years we have improved several of the (Mordell–Weil) rank records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For example, we found the first example of a curve E/Q with 28 independent points P i ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and the fi...
متن کاملAn elliptic surface of Mordell-Weil rank 8 over the rational numbers
Néron showed that an elliptic surface with rank 8, and with base B = P1Q, and geometric genus =0, may be obtained by blowing up 9 points in the plane. In this paper, we obtain parameterizations of the coefficients of the Weierstrass equations of such elliptic surfaces, in terms of the 9 points. Manin also describes bases of the Mordell-Weil groups of these elliptic surfaces, in terms of the 9 p...
متن کامل